Full Text:   <1762>

CLC number: R614

On-line Access: 

Received: 2007-11-08

Revision Accepted: 2007-12-13

Crosschecked: 0000-00-00

Cited: 23

Clicked: 3956

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.2 P.100~108


Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore

Author(s):  Wei HE, Feng-jiang ZHANG, Shao-ping WANG, Gang CHEN, Cong-cong CHEN, Min YAN

Affiliation(s):  Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; more

Corresponding email(s):   yanminnina@hotmail.com

Key Words:  Sevoflurane, Propofol, Postconditioning, Reperfusion injury, Mitochondrial permeability transition pore (MPTP)

Wei HE, Feng-jiang ZHANG, Shao-ping WANG, Gang CHEN, Cong-cong CHEN, Min YAN. Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore[J]. Journal of Zhejiang University Science B, 2008, 9(2): 100~108.

@article{title="Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore",
author="Wei HE, Feng-jiang ZHANG, Shao-ping WANG, Gang CHEN, Cong-cong CHEN, Min YAN",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore
%A Wei HE
%A Feng-jiang ZHANG
%A Shao-ping WANG
%A Gang CHEN
%A Cong-cong CHEN
%A Min YAN
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 2
%P 100~108
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0710586

T1 - Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore
A1 - Wei HE
A1 - Feng-jiang ZHANG
A1 - Shao-ping WANG
A1 - Gang CHEN
A1 - Cong-cong CHEN
A1 - Min YAN
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 2
SP - 100
EP - 108
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0710586

Background: sevoflurane and propofol are effective cardioprotective anaesthetic agents, though the cardioprotection of propofol has not been shown in humans. Their roles and underlying mechanisms in anesthetic postconditioning are unclear. mitochondrial permeability transition pore (MPTP) opening is a major cause of ischemia-reperfusion injury. Here we investigated sevoflurane- and propofol-induced postconditioning and their relationship with MPTP. Methods: Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. During the first 15 min of reperfusion, hearts were treated with either control buffer (CTRL group) or buffer containing 20 µmol/L atractyloside (ATR group), 3% (v/v) sevoflurane (SPC group), 50 µmol/L propofol (PPC group), or the combination of atractyloside with respective anesthetics (SPC+ATR and PPC+ATR groups). Infarct size was determined by dividing the total necrotic area of the left ventricle by the total left ventricular slice area (percent necrotic area). Results: Hearts treated with sevoflurane or propofol showed significantly better recovery of coronary flow, end-diastolic pressures, left ventricular developed pressure and derivatives compared with controls. sevoflurane resulted in more protective alteration of hemodynamics at most time point of reperfusion than propofol. These improvements were paralleled with the reduction of lactate dehydrogenase release and the decrease of infarct size (SPC vs CTRL: (17.48±2.70)% vs (48.47±6.03)%, P<0.05; PPC vs CTRL: (35.60±2.10)% vs (48.47±6.03)%, P<0.05). SPC group had less infarct size than PPC group (SPC vs PPC: (17.48±2.70)% vs (35.60±2.10)%, P<0.05). Atractyloside coadministration attenuated or completely blocked the cardioprotective effect of postconditioning of sevoflurane and propofol. Conclusion: postconditioning of sevoflurane and propofol has cardioprotective effect against ischemia-reperfusion injury of heart, which is associated with inhibition of MPTP opening. Compared to propofol, sevoflurane provides superior protection of functional recovery and infarct size.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Ansley, D.M., Sun, J., Visser, W.A., Dolman, J., Godin, D.V., Garnett, M.E., Qayumi, A.K., 1999. High dose propofol enhances red cell antioxidant capacity during CPB in humans. Can. J. Anaesth., 46(7):641-648.

[2] Argaud, L., Gateau-Roesch, O., Raisky, O., Loufouat, J., Robert, D., Ovize, M., 2005a. Postconditioning inhibits mitochondrial permeability transition. Circulation, 111(2):194-197.

[3] Argaud, L., Gateau-Roesch, O., Muntean, D., Chalabreysse, L., Loufouat, J., Robert, D., Ovize, M., 2005b. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J. Mol. Cell. Cardiol., 38(2):367-374.

[4] Bopassa, J.C., Ferrera, R., Gateau-Roesch, O., Couture-Lepetit, E., Ovize, M., 2006. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc. Res., 69(1):178-185.

[5] Cao, C.M., Xia, Q., Tu, J., Chen, M., Wu, S., Wong, T.M., 2004. Cardioprotection of interleukin-2 is mediated via kappa-opioid receptors. J. Pharmacol. Exp. Ther., 309(2):560-567.

[6] Crompton, M., 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J., 341(2):233-249.

[7] de Hert, S.G., ten Broecke, P.W., Mertens, E., van Sommeren, E.W., de Blier, I.G., Stockman, B.A., Rodrigus, I.E., 2002. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology, 97(1):42-49.

[8] de Hert, S.G., van der Linden, P.J., Cromheecke, S., Meeus, R., ten Broecke, P.W., de Blier, I.G., Stockman, B.A., Rodrigus, I.E., 2004. Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology, 101(1):9-20.

[9] Ebel, D., Schlack, W., Comfere, T., Preckel, B., Thamer, V., 1999. Effect of propofol on reperfusion injury after regional ischaemia in the isolated rat heart. Br. J. Anaesth., 83(6):903-908.

[10] Eriksson, O., Pollesello, P., Saris, N.E., 1992. Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol. Biochem. Pharmacol., 44(2):391-393.

[11] Feng, J., Lucchinetti, E., Ahuja, P., Pasch, T., Perriard, J.C., Zaugg, M., 2005. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3 beta. Anesthesiology, 103(5):987-995.

[12] Frokiaer, J., Marples, D., Valtin, H., Morris, J.F., Knepper, M.A., Nielsen, S., 1999. Low aquaporin-2 levels in polyuric DI +/+ severe mice with constitutively high cAMP-phosphodiesterase activity. Am. J. Physiol., 276(2 Pt 2):F179-F190.

[13] Griffiths, E.J., Halestrap, A.P., 1993. Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J. Mol. Cell. Cardiol., 25(12):1461-1469.

[14] Griffiths, E.J., Halestrap, A.P., 1995. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem. J., 307(Pt 1):93-98.

[15] Halestrap, A.P., Connern, C.P., Griffiths, E.J., Kerr, P.M., 1997. Cyclosporin a binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol. Cell. Biochem., 174(1-2):167-172.

[16] Halestrap, A.P., Kerr, P.M., Javadov, S., Woodfield, K.Y., 1998. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1366(1-2):79-94.

[17] Halestrap, A.P., Clarke, S.J., Javadov, S.A., 2004. Mitochondrial permeability transition pore opening during myocardial reperfusion—A target for cardioprotection. Cardiovasc. Res., 61(3):372-385.

[18] Hausenloy, D.J., Duchen, M.R., Yellon, D.M., 2003. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc. Res., 60(3):617-625.

[19] Javadov, S.A., Lim, K.H., Kerr, P.M., Suleiman, M.S., Angelini, G.D., Halestrap, A.P., 2000. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc. Res., 45(2):360-369.

[20] Kevin, L.G., Novalija, E., Riess, M.L., Camara, A.K., Rhodes, S.S., Stowe, D.F., 2003. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth. Analg., 96(4):949-955.

[21] Kin, H., Zatta, A.J., Lofye, M.T., Amerson, B.S., Halkos, M.E., Kerendi, F., Zhao, Z.Q., Guyton, R.A., Headrick, J.P., Vinten-Johansen, J., 2005. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc. Res., 67(1):124-133.

[22] Ko, S.H., Yu, C.W., Lee, S.K., Choe, H., Chung, M.J., Kwak, Y.G., Chae, S.W., Song, H.S., 1997. Propofol attenuates ischemia-reperfusion injury in the isolated rat heart. Anesth. Analg., 85(4):719-724.

[23] Kokita, N., Hara, A., Abiko, Y., Arakawa, J., Hashizume, H., Namiki, A., 1998. Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts. Anesth. Analg., 86(2):252-258.

[24] Li, D.Y., Zhang, Y.C., Philips, M.I., Sawamura, T., Mehta, J.L., 1999. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ. Res., 84(9):1043-1049.

[25] Mathur, S., Farhangkhgoee, P., Karmazyn, M., 1999. Cardioprotective effects of propofol and sevoflurane in ischemic and reperfused rat hearts: Role of K(ATP) channels and interaction with the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Anesthesiology, 91(5):1349-1360.

[26] Obal, D., Scharbatke, H., Barthel, H., Preckel, B., Mullenheim, J., Schlack, W., 2003. Cardioprotection against reperfusion injury is maximal with only two minutes of sevoflurane administration in rats. Can. J. Anaesth., 50(9):940-945.

[27] Obal, D., Dettwiler, S., Favoccia, C., Scharbatke, H., Preckel, B., Schlack, W., 2005. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth. Analg., 101(5):1252-1260.

[28] Penna, C., Rastaldo, R., Mancardi, D., Raimondo, S., Cappello, S., Gattullo, D., Losano, G., Pagliaro, P., 2006. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res. Cardiol., 101(2):180-189.

[29] Piper, H.M., Meuter, K., Schafer, C., 2003. Cellular mechanisms of ischemia-reperfusion injury. Ann. Thorac. Surg., 75(2):S644-S648.

[30] Sztark, F., Ichas, F., Ouhabi, R., Dabadie, P., Mazat, J.P., 1995. Effects of the anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: Direct pore inhibition and shift of the gating potential. FEBS. Lett., 368(1):101-104.

[31] Uecker, M., Da Silva, R., Grampp, T., Pasch, T., Schaub, M.C., Zaugg, M., 2003. Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning. Anesthesiology, 99(1):138-147.

[32] Vinten-Johansen, J., Zhao, Z.Q., Zatta, A.J., Kin, H., Halkos, M.E., Kerendi, F., 2005. Postconditioning—A new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res. Cardiol., 100(4):295-310.

[33] Weihrauch, D., Krolikowski, J.G., Bienengraeber, M., Kersten, J.R., Warltier, D.C., Pagel, P.S., 2005. Morphine enhances isoflurane-induced postconditioning against myocardial infarction: The role of phosphatidylinositol-3-kinase and opioid receptors in rabbits. Anesth. Analg., 101(4):942-949.

[34] Xia, Z., Huang, Z., Ansley, D.M., 2006. Large-dose propofol during cardiopulmonary bypass decreases biochemical markers of myocardial injury in coronary surgery patients: A comparison with isoflurane. Anesth. Analg., 103(3):527-532.

[35] Yan, M., Chen, C., Zhang, F., Chen, G., 2008. Lidocaine abolishes the myocardial protective effect of sevoflurane postconditioning. Acta Anaesthesiol. Scand., 52(1):111-116.

[36] Zhao, Z.Q., Vinten-Johansen, J., 2006. Postconditioning: Reduction of reperfusion-induced injury. Cardiovasc. Res., 70(2):200-211.

[37] Zhao, Z.Q., Corvera, J.S., Halkos, M.E., Kerendi, F., Wang, N.P., Guyton, R.A., Vinten-Johansen, J., 2003. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol., 285(2):H579-H588.

[38] Zhong, C., Zhou, Y., Liu, H., 2004. Nuclear factor kappaB and anesthetic preconditioning during myocardial ischemia-reperfusion. Anesthesiology, 100(3):540-546.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE