CLC number: R68
On-line Access:
Received: 2008-04-16
Revision Accepted: 2008-08-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 6393
Xing-can CHEN, Jian WENG, Xue-qun CHEN, Ji-zeng DU, Miao-ping ZHU, Yong-qing PAN, Miao LIU. Relationships among magnetic resonance imaging, histological findings, and IGF-I in steroid-induced osteonecrosis of the femoral head in rabbits[J]. Journal of Zhejiang University Science B, 2008, 9(9): 739-746.
@article{title="Relationships among magnetic resonance imaging, histological findings, and IGF-I in steroid-induced osteonecrosis of the femoral head in rabbits",
author="Xing-can CHEN, Jian WENG, Xue-qun CHEN, Ji-zeng DU, Miao-ping ZHU, Yong-qing PAN, Miao LIU",
journal="Journal of Zhejiang University Science B",
volume="9",
number="9",
pages="739-746",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820127"
}
%0 Journal Article
%T Relationships among magnetic resonance imaging, histological findings, and IGF-I in steroid-induced osteonecrosis of the femoral head in rabbits
%A Xing-can CHEN
%A Jian WENG
%A Xue-qun CHEN
%A Ji-zeng DU
%A Miao-ping ZHU
%A Yong-qing PAN
%A Miao LIU
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 9
%P 739-746
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820127
TY - JOUR
T1 - Relationships among magnetic resonance imaging, histological findings, and IGF-I in steroid-induced osteonecrosis of the femoral head in rabbits
A1 - Xing-can CHEN
A1 - Jian WENG
A1 - Xue-qun CHEN
A1 - Ji-zeng DU
A1 - Miao-ping ZHU
A1 - Yong-qing PAN
A1 - Miao LIU
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 9
SP - 739
EP - 746
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820127
Abstract: Objective: To study the relationships among magnetic resonance imaging (MRI), histological findings, and insulin-like growth factor-I (IGF-I) in steroid-induced osteonecrosis of the femoral head in rabbits. Methods: Thirty rabbits were randomly divided into experimental Group A (n=15) and control Group B (n=15). The 7.5 mg/kg (2 ml) of dexamethasone (DEX) and physiological saline (2 ml) were injected into the right gluteus medius muscle twice at one-week intervals in animals of Groups A and B, respectively. At 4, 8 and 16 weeks after obtaining an MRI, the rabbits were sacrificed and the femoral head from one side was removed for histological study of lacunae empty of osteocytes, subchondral vessels, and size of fat cells under microscopy, and the femoral head from the other side was removed for enzyme-linked immunoadsorbent assay (ELISA) for IGF-I. Results: At 4, 8 and 16 weeks after treatment, no necrotic lesions were detected in Group B, while they were detected in Group A. Light microscopy revealed that the fat cells of the marrow cavity were enlarged, subchondral vessels were evidently decreased, and empty bone lacunae were clearly increased. The IGF-I levels in Group A were significantly higher than those in Group B. At 8 weeks after the DEX injection, the MRI of all 20 femora showed an inhomogeneous, low signal intensity area in the femoral head, and at 16 weeks, the findings of all 10 femora showed a specific “line-like sign”. The MRI findings of all femora in Group B were normal. Conclusion: MRI is a highly sensitive means of diagnosing early experimental osteonecrosis of the femoral head. However, the abnormal marrow tissues appeared later than 4 weeks when the expression of IGF-I increased. This reparative factor has an early and important role in response to steroid-induced osteonecrosis of the femoral head, and provides a theoretical foundation for understanding the pathology and designing new therapies.
[1] Brody, A.S., Strong, M., Babikian, G., 1991. Avascular necrosis: early MR imaging and histologic findings in a canine model. AJR, 157(2):341-345.
[2] Catanese, V.M., Svfiavolino, P.J., Lango, M.N., 1993. Discordant, organspecific regulation of insulin-like growth factor-I messenger ribonucleic acid in insulin-deficient diabetes in rats. Endocrinology, 132(2):496-503.
[3] Cheng, M.Z., Simon, C.F., Rawlinsine, A.A., 2002. Human osteoblast proliferative responses to strain and 17beta2 estrodiol are mediated by the estrogen receptor and the receptor for lnsulin-like growth factor I. J. Bone Miner. Res., 17(4):593-602.
[4] Cui, Q., Wang, G.J., Balian, G., 1997. Steroid-induced adipogenesis in a pluripotential cell line from bone marrow. J. Bone Joint Surg., 79(7):1054-1063.
[5] D′Ercole, A.J., Stiles, A.D., Underwood, L.E., 1984. Tissue concentrations of somatomedin-C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc. Natl. Acad. Sci. USA, 81(3):935-939.
[6] Duda, S.H., Laniado, M., Schick, F., 1993. The double-line sign of osteonecrosis: evaluation on chemical shift MR images. Eur. J. Radiol., 16(3):233-238.
[7] Fan, F., Molina, P.E., Gelato, M.C., Lang, C.H., 1994. Differential tissue regulation of insulin-like growth factor-I content and binding proteins after endotoxin. Endocrinology, 134(4):1685-1692.
[8] Gelato, M.C., Vassalotti, J., Spatola, E., Carlson, H.E., Rulherford, C., Marsh, K., 1991. Differential tissue regulation of the insulin-like growth factors in rats bearing the MStT/W15 pituitary tumor. Neuroendocrinology, 561(6):765-774.
[9] Gimble, J.M., Robinson, C.E., Wu, X., Kelly, K.A., 1996. The function of adipocytes in the bone marrow stroma: an update. Bone, 19(5):421-428.
[10] Hawker, F.H., Stewart, P.M., Baxter, R.C., Borkmann, M., Tan, K., 1987. Relationship of somatomedin-C/1 insulin-like growth factor I levels to conventional nutritional indices in critically ill patients. Crit. Care Med., 15(8):732-736.
[11] Jia, D.A., Heersche, J.N.M., 2000. Insulin like growth factor-1 and 2 stimulate osteoprogenitor proliferation and differentiation and adipocyte formation in cell populations derived from adult rat bone. Bone, 27(6):785-794.
[12] Koo, K.H., Ahn, I.O., Kim, R., 1999. Bone marrow edema and associated pain in early stage osteonecrosis of the femoral head: prospective study with serial MR images. Radiology, 213(3):715-722.
[13] Krause, U., Wegener, G., Hewsholme, E.A., 1992. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vifro. Biochem. J., 285(Pt 1):269-274.
[14] Mitchell, D.G., 1989. Using MR imaging to probe the pathophysiology of osteonecrosis. Radiology, 171(1):25-26.
[15] Mitchell, M.D., Kundel, H.L., Steinberg, M.E., Kressel, H.Y., Alavi, A., Axel, L., 1986. Avascular necrosis of the hip: comparison of MR, CT, and scintigraphy. AJR, 147(1):67-71.
[16] Miyanishi, K., Yamamoto, T., Irisa, T., Yamashita, A., Jingushi, S., Noguchi, Y., Iwamoto, Y., 2001. A high LDL/HDL cholesterol ratio as a potential risk factor for corticosteroid-induced osteonecrosis in rabbits. Rheumatology, 40(2):196-201.
[17] Miyanishi, K., Yamamoto, T., Irisa, T., Yamashita, A., Jingushi, S., Noguchi, Y., Iwamoto, Y., 2002. Bone marrow fat cell enlargement and a rise in intraosseous pressure in steroid-treated rabbits with osteonecrosis. Bone, 30(1):185-190.
[18] Murphy, L.J., Bell, G.I., Friesen, H.G., Friesen, H.G., 1987. Tissue distribution of insulin like growth factor-I and -II messenger ribonucleic acid in the adult rat. Endocrinology, 120(4):1279-1282.
[19] Ross, R., Miell, J., Freeman, E., Jones, J., Matthew, D., Buchanan, C., 1991. Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin. Endocrinol. (Oxf.), 35(1):47-54.
[20] Sakaia, T., Suganoa, N., Tsuji, T., Nishii, T., Yoshikawa, H., Ohzono, K., 2000. Serial magnetic resonance imaging in a non-traumatic rabbit osteonecrosis model: an experimental longitudinal study. Magnetic Resonance Imaging, 18(7):897-905.
[21] Schwander, J.C., Hauri, C., Zapf, J., Froesch, E.R., 1983. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology, 113(1):297-305.
[22] Turkalj, I., Keller, U., Ninnis, R., 1992. Effect of increasing doses of recombinant human insulin-like growth factor-I on glucose, lipid and leucine metabolism in man. J. Clin. Endocrinol. Metab., 75(5):1186-1191.
[23] Uberoi, R., Tai, G., Hughes, P.M., 1994. Gadolinium-DTPA-enhanced MRI in the evaluation of osteonecrosis. Clin. Radiol., 49(9):645-648.
[24] Vande, B.C., Malghem, J., Lecouvet, F.E., Jamart, J., Maldague, B., 1999. Idiopathic bone marrow edema lesions of the femoral head: predictive value of MR imaging findings. Radiology, 212(2):527-535.
[25] Vande, B.E., Malghem, J.J., Labaisse, M.A., 1993. MR imaging of avascular necrosis and transient marrow edema of the femoral head. Radiographics, 13:501-520.
[26] Vande Berg, B., Gilon, R., Malghem, J., Lecouvet, F., Depresseux, G., Houssiau, F., 2006. Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid-treated patients: a longitudinal study by MR imaging. Eur. J. Radiol., 58(3):444-449.
[27] Wildemann, B., Schmidmaier, G., Brenner, N., 2004. Quantification, localization, and expression of IGF-I and TGF-β1 during growth factor-stimulated fracture healing. Calcif. Tissue Int., 74(4):388-397.
[28] Yamamoto, T., Irisa, T., Sugioka, Y., Sueishi, K., 1997. Effects of pulse methylprednisolone on bone and marrow tissues. Arthritis Rheum, 40(11):2055-2064.
Open peer comments: Debate/Discuss/Question/Opinion
<1>