CLC number: S635.9
On-line Access: 2017-12-05
Received: 2017-06-12
Revision Accepted: 2017-08-14
Crosschecked: 2017-11-15
Cited: 0
Clicked: 4697
Hui-ying Miao, Meng-yu Wang, Jia-qi Chang, Han Tao, Bo Sun, Qiao-mei Wang. Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts[J]. Journal of Zhejiang University Science B, 2017, 18(12): 1093-1100.
@article{title="Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts",
author="Hui-ying Miao, Meng-yu Wang, Jia-qi Chang, Han Tao, Bo Sun, Qiao-mei Wang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="12",
pages="1093-1100",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700308"
}
%0 Journal Article
%T Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts
%A Hui-ying Miao
%A Meng-yu Wang
%A Jia-qi Chang
%A Han Tao
%A Bo Sun
%A Qiao-mei Wang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 12
%P 1093-1100
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700308
TY - JOUR
T1 - Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts
A1 - Hui-ying Miao
A1 - Meng-yu Wang
A1 - Jia-qi Chang
A1 - Han Tao
A1 - Bo Sun
A1 - Qiao-mei Wang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 12
SP - 1093
EP - 1100
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700308
Abstract: glucosinolates, anthocyanins, total phenols, and vitamin C, as well as antioxidant capacity, were investigated in chinese kale sprouts treated with both glucose and gibberellic acid (GA3). The combination of 3% (0.03 g/ml) glucose and 5 μmol/L GA3 treatment was effective in increasing glucosinolate content while glucose or GA3 treatment alone did not influence significantly almost all individual glucosinolates or total glucosinolates. The total phenolic content and antioxidant activity of chinese kale sprouts were enhanced by combined treatment with glucose and GA3, which could be useful in improving the main health-promoting compounds and antioxidant activity in chinese kale sprouts.
[1]Abbasi, B.H., Stiles, A.R., Saxena, P.K., et al., 2012. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Appl. Biochem. Biotechnol., 168(7):2057-2066.
[2]Ainsworth, E.A., Gillespie, K.M., 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc., 2(4):875-877.
[3]Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1):70-76.
[4]Cartea, M.E., Velasco, P., 2008. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem. Rev., 7(2):213-229.
[5]Castañeda-Ovando, A., Pacheco-Hernández, M.D.L., Páez-Hernández, M.E., et al., 2009. Chemical studies of anthocyanins: a review. Food Chem., 113(4):859-871.
[6]Dinkova-Kostova, A.T., Kostov, R.V., 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med., 18(6):337-347.
[7]Fahey, J.W., Zhang, Y.S., Talalay, P., 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA, 94(19):10367-10372.
[8]Frerigmann, H., Gigolashvili, T., 2014. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol. Plant, 7(5):814-828.
[9]Guo, R., Qian, H., Shen, W., et al., 2013a. BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. J. Exp. Bot., 64(8):2401-2412.
[10]Guo, R., Yuan, G., Wang, Q., 2013b. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(2):124-131.
[11]Guo, R., Shen, W., Qian, H., et al., 2013c. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. J. Exp. Bot., 64(18):5707-5719.
[12]Huang, X., He, R., Liao, X., et al., 2014. Effect of exogenous gibberellin on reserve accumulation during the seed filling stage of oilseed rape. Genet. Mol. Res., 13(2):2827-2839.
[13]Huseby, S., Koprivova, A., Lee, B.R., et al., 2013. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot., 64(4):1039-1048.
[14]Jiang, W., Sheng, Q., Jiang, Y., et al., 2004. Effects of 1-methylcyclopropene and gibberellic acid on ripening of Chinese jujube (Zizyphus jujuba M) in relation to quality. J. Sci. Food Agric., 84(1):31-35.
[15]Kim, H.H., Kwon, D.Y., Uddin, M.R., et al., 2013. Influence of auxins on glucosinolate biosynthesis in hairy root cultures of Broccoli (Brassica oleracea var. italica). Asian J. Chem., 25(11):6099-6101.
[16]Kim, H.J., Chen, F., Wang, X., et al., 2006. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem., 54(19):7263-7269.
[17]Kumar, G., Tuli, H.S., Mittal, S., et al., 2015. Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol., 36(6):4005-4016.
[18]Liang, Z., Ma, Y., Xu, T., et al., 2013. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLoS ONE, 8(9):e72806.
[19]Loreti, E., Povero, G., Novi, G., et al., 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol., 179(4):1004-1016.
[20]Mazumder, A., Dwivedi, A., du Plessis, J., 2016. Sinigrin and its therapeutic benefits. Molecules, 21(4):416.
[21]Miao, H., Wei, J., Zhao, Y., et al., 2013. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J. Exp. Bot., 64(4):1097-1109.
[22]Naeem, N., Ishtiaq, M., Khan, P., et al., 2001. Effect of gibberellic acid on growth and yield of tomato cv. Roma. J. Biol. Sci., 1(6):448-450.
[23]Park, C.H., Yeo, H.J., Park, Y.J., et al., 2017. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules, 22(3):374.
[24]Podsędek, A., 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci. Technol., 40(1):1-11.
[25]Schweizer, F., Fernándezcalvo, P., Zander, M., et al., 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell, 25(8):3117-3132.
[26]Sheen, J., 2014. Master regulators in plant glucose signaling networks. J. Plant Biol., 57(2):67-79.
[27]Sun, B., Liu, N., Zhao, Y., et al., 2011. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem., 124(3):941-947.
[28]Sun, B., Yan, H., Zhang, F., et al., 2012. Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale. Food Res. Int., 48(2):359-366.
[29]Teng, S., Keurentjes, J., Bentsink, L., et al., 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol., 139(4):1840-1852.
[30]Wang, J., Gu, H., Yu, H., et al., 2012. Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem., 133(3):735-741.
[31]Wei, J., Miao, H., Wang, Q., 2011. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts. Sci. Hort., 129(4):535-540.
[32]Yuan, G., Sun, B., Yuan, J., et al., 2009. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 10(8):580-588.
[33]Yuan, G., Bo, S., Jing, Y., et al., 2010a. Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chem., 118(3):774-781.
[34]Yuan, G., Wang, X., Guo, R., et al., 2010b. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem., 121(4):1014-1019.
[35]Zang, Y., Ge, J., Huang, L., et al., 2015. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(8):696-708.
[36]Zhang, Y., Zhen, L., Tan, X., et al., 2014. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Mol. Biol. Rep., 41(12):7899-7910.
Open peer comments: Debate/Discuss/Question/Opinion
<1>