Full Text:   <163>

Summary:  <52>

CLC number: Q785

On-line Access: 2020-04-07

Received: 2019-10-15

Revision Accepted: 2020-01-06

Crosschecked: 2020-03-25

Cited: 0

Clicked: 217

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.4 P.327-340

10.1631/jzus.B1900598


Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation


Author(s):  Shu Chen, Qian Wang, Bing Han, Jia Wu, Ding-Kun Liu, Jun-Dong Zou, Mi Wang, Zhi-Hui Liu

Affiliation(s):  Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; more

Corresponding email(s):   liu_zh@jlu.edu.cn

Key Words:  Leptin, Angiogenesis, Pro-inflammatory cytokines, X-ray radiation, Human placenta-derived mesenchymal stem cells (HPMSCs), Human umbilical vein endothelial cells (HUVECs)


Shu Chen, Qian Wang, Bing Han, Jia Wu, Ding-Kun Liu, Jun-Dong Zou, Mi Wang, Zhi-Hui Liu. Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation[J]. Journal of Zhejiang University Science B, 2020, 21(4): 327-340.

@article{title="Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation",
author="Shu Chen, Qian Wang, Bing Han, Jia Wu, Ding-Kun Liu, Jun-Dong Zou, Mi Wang, Zhi-Hui Liu",
journal="Journal of Zhejiang University Science B",
volume="21",
number="4",
pages="327-340",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900598"
}

%0 Journal Article
%T Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation
%A Shu Chen
%A Qian Wang
%A Bing Han
%A Jia Wu
%A Ding-Kun Liu
%A Jun-Dong Zou
%A Mi Wang
%A Zhi-Hui Liu
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 4
%P 327-340
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900598

TY - JOUR
T1 - Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation
A1 - Shu Chen
A1 - Qian Wang
A1 - Bing Han
A1 - Jia Wu
A1 - Ding-Kun Liu
A1 - Jun-Dong Zou
A1 - Mi Wang
A1 - Zhi-Hui Liu
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 4
SP - 327
EP - 340
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900598


Abstract: 
Combined radiation-wound injury (CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells (HUVECs). leptin was transfected into human placenta-derived mesenchymal stem cells (HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. The secretion of pro-inflammatory cytokines (human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay (ELISA). The expression of pro-angiogenic factors (vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Relevant molecules of the nuclear factor-κB (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs (HPMSCs/ leptin) exhibited better cell proliferation, migration, and angiogenic potential (expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines (human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after x-ray radiation.

转染瘦素人胎盘源间充质干细胞对经X射线辐照后人脐静脉内皮细胞的成血管潜能和周围炎症的影响

目的:放创复合伤是一种以血管损伤和促炎细胞因子缺乏为特征的难愈性创伤.瘦素(leptin)的直接应用在血管生成和炎症中起着重要作用.本研究构建了一种可持续稳定的leptin表达系统--leptin修饰的人胎盘来源间充质干细胞(HPMSCs/leptin),并探究其对经X射线辐照后的人脐静脉内皮细胞(HUVECs)的成血管潜能及周围炎症的影响和潜在机制.
创新点:可持续稳定的leptin表达系统(HPMSCs/leptin)促进受X射线辐照后HUVECs的成血管潜能及外周炎症反应,有助于解决放创复合伤伤口愈合过程中血管损伤和促炎因子缺乏的问题.
方法:利用慢病毒载体将leptin基因转染HPMSCs获得HPMSCs/leptin.采用X射线单次照射HUVECs,剂量为20 Gy.细胞迁移侵袭实验技术(Transwell)检测照射后HUVECs的迁移情况.在Transwell体系的基础上,建立HPMSCs与受辐照HUVECs共培养体系.CCK-8比色法测定细胞增殖.酶联免疫吸附法(ELISA)检测促炎细胞因子(粒细胞-巨噬细胞集落刺激因子(GM-CSF)、白细胞介素-1α(IL-1α)、IL-6和IL-8)的分泌.实时荧光定量聚合酶链式反应(RT-qPCR)检测促血管生成因子(VEGF和bFGF)mRNA的表达.蛋白免疫印迹法(western blot)检测核因子κB(NF-κB)和JAK/STAT信号通路的相关分子表达.
结论:可持续稳定的leptin表达系统(HPMSCs/leptin)具有更好的细胞增殖、迁移和成血管潜能.HPMSCs/leptin单独培养和HPMSCs/leptin与受辐照HUVECs共培养体系中,促炎细胞因子的分泌增加与NF-κB和JAK/STAT信号通路的相互作用有关.HPMSCs/leptin可能促进X射线照射后HUVECs的成血管潜能和外周炎症反应.

关键词:瘦素表达系统;血管生成;促炎细胞因子;X线辐射;人脐静脉内皮细胞

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abella V, Scotece M, Conde J, et al., 2017. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol, 13(2):100-109.

[2]Adya R, Tan BK, Randeva HS, 2015. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res, 2015:648239.

[3]Alviano F, Fossati V, Marchionni C, et al., 2007. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol, 7:11.

[4]Baeuerle PA, 1998. IκB-NF-κB structures: at the interface of inflammation control. Cell, 95(6):729-731.

[5]Bai Y, Bai LJ, Zhou J, et al., 2018. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol, 323:19-32.

[6]Baldwin AS Jr, 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol, 14:649-681.

[7]Cao RH, Brakenhielm E, Wahlestedt C, et al., 2001. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci USA, 98(11):6390-6395.

[8]Chang CC, Lerman OZ, Thanik VD, et al., 2009. Dose-dependent effect of radiation on angiogenic and angiostatic CXC chemokine expression in human endothelial cells. Cytokine, 48(3):295-302.

[9]Duscher D, Barrera J, Wong VW, et al., 2016. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology, 62(2):216-225.

[10]Frühbeck G, 2006. Intracellular signalling pathways activated by leptin. Biochem J, 393(1):7-20.

[11]Grote K, Luchtefeld M, Schieffer B, 2005. JANUS under stress—role of JAK/STAT signaling pathway in vascular diseases. Vascul Pharmacol, 43(5):357-363.

[12]Hao L, Wang J, Zou Z, et al., 2009. Transplantation of BMSCs expressing hPDGF-A/hBD2 promotes wound healing in rats with combined radiation-wound injury. Gene Ther, 16(1):34-42.

[13]Jin JL, Wang BW, Zhu ZW, et al., 2014. Construction of a recombinant eukaryotic expression vector containing a leptin gene and its expression in HPMSCs. Cytotechnology, 66(3):471-479.

[14]Kurtovic S, Ng TT, Gupta A, et al., 2015. Leptin enhances endothelial cell differentiation and angiogenesis in murine embryonic stem cells. Microvasc Res, 97:65-74.

[15]Lancha A, Frühbeck G, Gómez-Ambrosi J, 2012. Peripheral signalling involved in energy homeostasis control. Nutr Res Rev, 25(2):223-248.

[16]Lee JM, Jung J, Lee HJ, et al., 2012. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol, 13(2):219-224.

[17]Li NX, Karin M, 1998. Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc Natl Acad Sci USA, 95(22):13012-13017.

[18]Liapaki I, Anagnostoulis S, Karayiannakis A, et al., 2008. Burn wound angiogenesis is increased by exogenously administered recombinant leptin in rats. Acta Cir Bras, 23(2):118-124.

[19]Liu CL, Liu ZH, Wang BW, et al., 2009. Study on multi-directional differentiation potentiality of human placenat derived mesenchymal—like stem cells in vitro. Chin J Lab Diagn, 13(8):1022-1024 (in Chinese).

[20]Manjunathan R, Ragunathan M, 2015. In ovo administration of human recombinant leptin shows dose dependent angiogenic effect on chicken chorioallantoic membrane. Biol Res, 48:29.

[21]Marques FG, Poli E, Rino J, et al., 2019. Low doses of ionizing radiation enhance the angiogenic potential of adipocyte conditioned medium. Radiat Res, 192(5):517-526.

[22]Mustoe TA, Purdy J, Gramates P, et al., 1989. Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor-BB. Am J Surg, 158(4):345-350.

[23]Nwadozi E, Ng A, Strömberg A, et al., 2019. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis, 22(1):103-115.

[24]Park HK, Ahima RS, 2015. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism, 64(1):24-34.

[25]Park HY, Kwon HM, Lim HJ, et al., 2001. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med, 33(2):95-102.

[26]Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, et al., 2017. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev, 35:71-84.

[27]Powers WE, Ogura JH, Palmer LA, 1967. Radiation therapy and wound healing delay: animals and man. Radiology, 89(1):112-115.

[28]Sabapathy V, Ravi S, Srivastava V, et al., 2012. Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int, 2012:174328.

[29]Shentu WH, Yan CH, Liu CM, et al., 2018. Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(9):699-707.

[30]Sierra-Honigmann MR, Nath AK, Murakami C, et al., 1998. Biological action of leptin as an angiogenic factor. Science, 281(5383):1683-1686.

[31]Sun C, Wang Z, Tian JW, et al., 2018. Leptin-induced inflammation by activating IL-6 expression contributes to the fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis. Biosci Rep, 38(2):BSR20171214.

[32]Tadokoro S, Ide S, Tokuyama R, et al., 2015. Leptin promotes wound healing in the skin. PLoS ONE, 10(3):e0121242.

[33]Umeki H, Tokuyama R, Ide S, et al., 2014. Leptin promotes wound healing in the oral mucosa. PLoS ONE, 9(7):e101984.

[34]van den Brenk HAS, Orton C, Stone M, et al., 1974a. Effects of X-radiation on growth and function of the repair blastema (granulation tissue). I. Wound contraction. Int J Radiat Biol Relat Stud Phys Chem Med, 25(1):1-19.

[35]van den Brenk HAS, Sharpington C, Orton C, et al., 1974b. Effects of X-radiation on growth and function of the repair blastema (granulation tissue). II. Measurements of angiogenesis in the Selye pouch in the rat. Int J Radiat Biol Relat Stud Phys Chem Med, 25(3):277-289.

[36]van Hove AH, Benoit DSW, 2015. Depot-based delivery systems for pro-angiogenic peptides: a review. Front Bioeng Biotechnol, 3:102.

[37]Vincenti S, Brillante N, Lanza V, et al., 2011. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Res, 175(5):535-546.

[38]Walker JG, Smith MD, 2005. The JAK-STAT pathway in rheumatoid arthritis. J Rheumatol, 32(9):1650-1653.

[39]Yu YY, Yang J, Fu SS, et al., 2019. Leptin promotes monosodium urate crystal-induced inflammation in human and murine models of gout. J Immunol, 202(9):2728-2736.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE