Full Text:   <652>

Summary:  <119>

CLC number: 

On-line Access: 2024-07-17

Received: 2023-05-09

Revision Accepted: 2023-09-05

Crosschecked: 2024-07-17

Cited: 0

Clicked: 729

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiaodan JIA

https://orcid.org/0000-0002-6010-3066

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.7 P.605-616

http://doi.org/10.1631/jzus.B2300312


Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout


Author(s):  Xiaodan JIA, Ke LU, Xufang LIANG

Affiliation(s):  College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; more

Corresponding email(s):   xufang_liang@hotmail.com

Key Words:  Neuropeptide Y receptor Y8b (npy8br), Japanese medaka (Oryzias latipes), Knockout, Feeding, Digestion


Xiaodan JIA, Ke LU, Xufang LIANG. Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout[J]. Journal of Zhejiang University Science B, 2024, 25(7): 605-616.

@article{title="Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout",
author="Xiaodan JIA, Ke LU, Xufang LIANG",
journal="Journal of Zhejiang University Science B",
volume="25",
number="7",
pages="605-616",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300312"
}

%0 Journal Article
%T Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout
%A Xiaodan JIA
%A Ke LU
%A Xufang LIANG
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 7
%P 605-616
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300312

TY - JOUR
T1 - Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout
A1 - Xiaodan JIA
A1 - Ke LU
A1 - Xufang LIANG
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 7
SP - 605
EP - 616
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300312


Abstract: 
Neuropeptide Y receptor Y8 (NPY8R) is a fish-specific receptor with two subtypes, NPY8AR and NPY8BR. Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation; this has been found in only a few fish, at present. In order to better understand the physiological function of npy8br, especially in digestion, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate npy8br-/- japanese medaka (Oryzias latipes). We found that the deletion of npy8br in medaka larvae affected their feeding and digestion ability, ultimately affecting their growth. Specifically, npy8br deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes (npy and agrp). npy8br-/- medaka larvae fed for 10 d (10th day of feeding) still had incompletely digested brine shrimp (Artemia nauplii) in the digestive tract 8 h after feeding, the messenger RNA (mRNA) expression levels of digestion-related genes (amy, lpl, ctra, and ctrb) were significantly decreased, and the activity of amylase, trypsin, and lipase also significantly decreased. The deletion of npy8br in medaka larvae inhibited the growth and significantly decreased the expression of growth-related genes (gh and igf1). Hematoxylin and eosin (H&E) sections of intestinal tissue showed that npy8br-/- medaka larvae had damaged intestine, thinned intestinal wall, and shortened intestinal villi. So far, this is the first npy8br gene knockout model established in fish and the first demonstration that npy8br plays an important role in digestion.

神经肽受体Y8b(npy8br)调节日本青鳉(Oryzias latipes)仔鱼的摄食和消化:来自基因敲除的证据

贾晓丹1,2,陆可1,2,梁旭方1,2
1华中农业大学水产学院,华中农业大学鳜鱼研究中心,中国武汉市,430070
2长江经济带大宗水生生物产业绿色发展教育部工程研究中心,中国武汉市,430070
摘要:神经肽Y受体Y8(NPY8R)是一种鱼类特异性受体,具有NPY8AR和NPY8BR两种亚型。生理过程中表达水平的变化以及心室注射后体内调节过程表明,NPY8BR在摄食调节中发挥着重要作用;目前只在少数鱼类中发现有这种作用。为了更好地了解NPY8BR的生理功能,特别是消化方面,我们利用CRISPR/Cas9技术构建了npy8br-/-日本青鳉(Oryzias latipes)。实验结果表明,npy8br基因缺失会影响青鳉仔鱼的摄食和消化能力,并最终影响其生长。具体来说,缺失npy8br会导致鳉鱼仔鱼摄食量减少和食欲相关基因(npyagrp)表达水平降低。饲喂10 d(饲喂第10天)的npy8br-/-青鳉仔鱼在摄食8 h后消化道内仍有未完全消化的卤虫(Artemia nauplii),消化相关基因(amylplctractrb)mRNA表达量显著降低,且淀粉酶、胰蛋白酶和脂肪酶活性也显著降低。npy8br的缺失抑制了青鳉仔鱼的生长,显著降低了生长相关基因(ghigf1)的表达。肠道组织切片显示,npy8br-/-青鳉仔鱼肠道受损,肠壁变薄,肠绒毛变短。本研究首次成功构建了鱼类的npy8br基因敲除模型,并证明npy8br在消化过程发挥着重要作用。

关键词:神经肽Y受体Y8(npy8br);日本青鳉(Oryzias latipes);敲除;摄食;消化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-TameemiR, AldubaikulA, SalmanNA, 2010. Comparative study of α‍-amylase activity in three Cyprinid species of different feeding habits from Southern Iraq. Turk J Fish Aquat Sci, 10(3):411-414.

[2]AssanD, MustaphaUF, ChenHP, et al., 2021. The roles of neuropeptide Y (Npy) and peptide YY (Pyy) in teleost food intake: a mini review. Life, 11(6):547.

[3]CanosaLF, ChangJP, PeterRE, 2007. Neuroendocrine control of growth hormone in fish. Gen Comp Endocr, 151(1):1-26.

[4]CaraB, MoyanoFJ, ZamboninoJL, et al., 2007. Trypsin and chymotrypsin as indicators of nutritional status of post‐weaned sea bass larvae. J Fish Biol, 70(6):1798-1808.

[5]Cerdá-ReverterJM, Martı́nez-Rodrı́guezG, ZanuyS, et al., 2000. Molecular evolution of the neuropeptide Y (NPY) family of peptides: cloning of three NPY-related peptides from the sea bass (Dicentrarchus labrax). Regul Peptides, 95(1-3):25-34.

[6]ChisadaSI, KurokawaT, MurashitaK, et al., 2014. Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation. Gen Comp Endocr, 195:‍9-20.

[7]ConlonJM, 2002. The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP). Peptides, 23(2):269-278.

[8]de SouzaAPL, FerreiraTH, MouriñoJLP, et al., 2020. Use of Artemia supplemented with exogenous digestive enzymes as sole live food increased survival and growth during the larviculture of the longsnout seahorse Hippocampus reidi. Aquacult Nutr, 26(3):964-977.

[9]DouglasSE, MandlaS, GallantJW, 2000. Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture, 190(3-4):247-260.

[10]FengHX, LiangXF, 2022. Knockout of lipoprotein lipase with CRISPR/Cas9 causes severe developmental defects and affects lipid deposition in Japanese medaka (Oryzias latipes). Water Biol Secur, 1(2):100038.

[11]GalavizMA, García-OrtegaA, GisbertE, et al., 2012. Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol Part B Biochem Mol Biol, 161(1):9-16.

[12]HarringtonM, MolyneuxP, SosciaS, et al., 2007. Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy-/- mice. Am J Physiol-Regul Integr Comp Physiol, 292(3):‍R1306-R1314.

[13]HidalgoMC, UreaE, SanzA, 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170(3-4):267-283.

[14]HideWA, ChanL, LiWH, 1992. Structure and evolution of the lipase superfamily. J Lipid Res, 33(2):167-178.

[15]HuhmanKL, GillespieCF, MarvelCL, et al., 1996. Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor. NeuroReport, 7(7):1249-1252.

[16]KamijoM, KojimaK, MaruyamaK, et al., 2011. Neuropeptide Y in tiger puffer (Takifugu rubripes): distribution, cloning, characterization, and mRNA expression responses to prandial condition. Zool Sci, 28(12):882-890.

[17]KulczykowskaE, Sánchez VázquezFJ, 2010. Neurohormonal regulation of feed intake and response to nutrients in fish: aspects of feeding rhythm and stress. Aquac Res, 41(5):654-667.

[18]LarhammarD, SalaneckE, 2004. Molecular evolution of NPY receptor subtypes. Neuropeptides, 38(4):141-151.

[19]LarhammarD, WraithA, BerglundMM, et al., 2001. Origins of the many NPY-family receptors in mammals. Peptides, 22(3):295-307.

[20]LarssonTA, TayBH, SundströmG, et al., 2009. Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation. Genomics, 93(3):254-260.

[21]LiangXF, LiGZ, YaoW, et al., 2007. Molecular characterization of neuropeptide Y gene in Chinese perch, an acanthomorph fish. Comp Biochem Physiol Part B Biochem Mol Biol, 148(1):55-64.

[22]LivakKJ, SchmittgenTD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 25(4):402-408.

[23]LohK, HerzogH, ShiYC, 2015. Regulation of energy homeostasis by the NPY system. Trends Endocr Metab, 26(3):125-135.

[24]MirIN, SrivastavaPP, BhatIA, et al., 2018. Expression and activity of trypsin and pepsin during larval development of Indian walking catfish (Clarias magur). Aquaculture, 491:266-272.

[25]NdandalaCB, DaiM, MustaphaUF, et al., 2022. Current research and future perspectives of GH and IGFs family genes in somatic growth and reproduction of teleost fish. Aquac Rep, 26:101289.

[26]Pedragosa-BadiaX, StichelJ, Beck-SickingerAG, 2013. Neuropeptide Y receptors: how to get subtype selectivity. Front Endocr, 4:5.

[27]PerssonL, de RoosAM, 2006. Food‍‐‍dependent individual growth and population dynamics in fishes. J Fish Biol, 69(sc):1-20.

[28]RønnestadI, YúferaM, UeberschärB, et al., 2013. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac, 5(s1):S59-S98.

[29]SalzeG, McLeanE, CraigSR, 2012. Pepsin ontogeny and stomach development in larval cobia. Aquaculture, 324-325:315-318.

[30]ShiozakiK, KawabeM, KarasuyamaK, et al., 2020. Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep, 10:5913.

[31]SinghC, RihelJ, ProberDA, 2017. Neuropeptide Y regulates sleep by modulating noradrenergic signaling. Curr Biol, 27(24):3796-3811.e5.

[32]SolovyevM, KashinskayaE, GisbertE, 2023. A meta-analysis for assessing the contributions of trypsin and chymotrypsin as the two major endoproteases in protein hydrolysis in fish intestine. Comp Biochem Physiol Part A Mol Integr Physiol, 278:111372.

[33]SolovyevMM, KashinskayaEN, IzvekovaGI, et al., 2014. Feeding habits and ontogenic changes in digestive enzyme patterns in five freshwater teleosts. J Fish Biol, 85(5):1395-1412.

[34]SongY, GollingG, ThackerTL, et al., 2003. Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafish, Danio rerio. Endocrine, 22(3):‍257-266.

[35]SundströmG, LarssonTA, XuB, et al., 2013. Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a, and Y8b. Front Neurosci, 7:29.

[36]SveinsdóttirH, ThorarensenH, GudmundsdóttirÁ, 2006. Involvement of trypsin and chymotrypsin activities in Atlantic cod (Gadus morhua) embryogenesis. Aquaculture, 260(1-4):307-314.

[37]TschenettA, SingewaldN, CarliM, et al., 2003. Reduced anxiety and improved stress coping ability in mice lacking NPY‐Y2 receptors. Eur J Neurosci, 18(1):143-148.

[38]TuYQ, XieSQ, HanD, et al., 2015. Growth performance, digestive enzyme, transaminase and GH-IGF-I axis gene responsiveness to different dietary protein levels in broodstock allogenogynetic gibel carp (Carassius auratus gibelio) CAS III. Aquaculture, 446:290-297.

[39]UllahS, ZhangJZ, XuBY, et al., 2022. Effect of dietary supplementation of lauric acid on growth performance, antioxidative capacity, intestinal development and gut microbiota on black sea bream (Acanthopagrus schlegelii). PLoS ONE, 17(1):e0262427.

[40]VolkoffH, 2006. The role of neuropeptide Y, orexins, cocaine and amphetamine-related transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp Biochem Physiol Part A Mol Integr Physiol, 144(3):‍325-331.

[41]VolkoffH, PeterRE, 2006. Feeding behavior of fish and its control. Zebrafish, 3(2):131-140.

[42]WanYM, ZhangY, JiPF, et al., 2012. Molecular characterization of CART, AgRP, and MC4R genes and their expression with fasting and re-feeding in common carp (Cyprinus carpio). Mol Biol Rep, 39(3):2215-2223.

[43]WangF, ChenWM, LinHR, et al., 2014. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides. Fish Physiol Biochem, 40(6):‍1693-1707.

[44]WongH, SchotzMC, 2002. The lipase gene family. J Lipid Res, 43(7):993-999.

[45]WraithA, TörnstenA, ChardonP, et al., 2000. Evolution of the neuropeptide Y receptor family: gene and chromosome duplications deduced from the cloning and mapping of the five receptor subtype genes in pig. Genome Res, 10(3):302-310.

[46]XuB, LagmanD, SundströmG, et al., 2015. Neuropeptide Y family receptors Y1 and Y2 from sea lamprey, Petromyzon marinus. Gen Comp Endocr, 222:106-115.

[47]ZhangJX, GuoLY, FengL, et al., 2013. Soybean β‍-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE, 8(3):e58115.

[48]ZhangYP, ZhangZ, LiangXF, et al., 2021. Role of NPY receptor 8 in regulating of food intake in Chinese perch (Siniperca chuatsi). Aquac Int, 29(6):2619-2634.

[49]ZhaoJ, LiuY, JiangJ, et al., 2012. Effects of dietary isoleucine on growth, the digestion and absorption capacity and gene expression in hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 368-369:117-128.

[50]ZhouL, BudgeSM, GhalyAE, et al., 2011. Extraction, purification and characterization of fish chymotrypsin: a review. Am J Biochem Biotechnol, 7(3):104-123.

[51]ZhouY, LiangXF, YuanXC, et al., 2013. Neuropeptide Y stimulates food intake and regulates metabolism in grass carp, Ctenopharyngodon idellus. Aquaculture, 380-383:52-61.

[52]ZouXQ, ChenL, LiBJ, et al., 2022. The neuropeptide Y receptor gene repository, phylogeny and comparative expression in allotetraploid common carp. Sci Rep, 12:9449.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE