CLC number: TN4
On-line Access: 2013-04-03
Received: 2012-12-22
Revision Accepted: 2013-03-13
Crosschecked: 2013-03-23
Cited: 1
Clicked: 8463
Ge-liang Yang, Zhi-gong Wang, Zhi-qun Li, Qin Li, Fa-en Liu, Zhu Li. Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology[J]. Journal of Zhejiang University Science C, 2013, 14(4): 288-295.
@article{title="Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology",
author="Ge-liang Yang, Zhi-gong Wang, Zhi-qun Li, Qin Li, Fa-en Liu, Zhu Li",
journal="Journal of Zhejiang University Science C",
volume="14",
number="4",
pages="288-295",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200369"
}
%0 Journal Article
%T Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology
%A Ge-liang Yang
%A Zhi-gong Wang
%A Zhi-qun Li
%A Qin Li
%A Fa-en Liu
%A Zhu Li
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 4
%P 288-295
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200369
TY - JOUR
T1 - Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology
A1 - Ge-liang Yang
A1 - Zhi-gong Wang
A1 - Zhi-qun Li
A1 - Qin Li
A1 - Fa-en Liu
A1 - Zhu Li
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 4
SP - 288
EP - 295
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200369
Abstract: A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of −15–−12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28–35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred P1dB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm2 including pads.
[1]Bao, M., Jacobsson, H., Aspemyr, L., Carchon, G., Sun, X., 2006. A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology. IEEE J. Sol.-State Circ., 41(10):2257-2264.
[2]Barker, G.K., Badawi, M.H., Mun, J., 1984. 60GHz monolithic GaAs front-end circuit for reciver applications. Electron. Lett., 20(8):334-335.
[3]Chiang, P.Y., Su, C.W., Luo, S.Y., Hu, R., Jou, C.F., 2010. Wide-IF-band CMOS mixer design. IEEE Trans. Microw. Theory Techn., 58(4):831-840.
[4]Chiou, H.K., Lin, J.Y., 2011. Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer designs. IEEE Trans. Microw. Theory Technol., 59(6):1529-1538.
[5]Chiou, H.K., Yang, T.Y., Hsu, Y.C., Lin, S.G., Juang, Y.Z., 2007. 15–60 GHz asymmetric broadside coupled balun in 0.18 μm CMOS technology. Electron. Lett., 43(19):1028-1030.
[6]Hwang, Y.J., Wang, H., Chu, T.H., 2004. A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer. IEEE Microw. Wirel. Comp. Lett., 14(7):313-315.
[7]Lin, C.H., Lai, Y.A., Chiu, J.C., Wang, Y.H., 2007. A 23– 37 GHz miniature MMIC subharmonic mixer. IEEE Microw. Wirel. Comp. Lett., 17(9):679-681.
[8]Lin, C.M., Lin, H.K., Lai, Y.A., Chang, C.P., Wang, Y.H., 2009. A 10–40 GHz broadband subharmonic monolithic mixer in 0.18-μm CMOS technology. IEEE Microw. Wirel. Comp. Lett., 19(2):95-97.
[9]Sun, M., Zhang, Y.P., Liu, D.X., Chua, K.M., Wai, L.L., 2011. A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver. IEEE Trans. Antennas Propag., 59(6):2134-2140.
[10]Wang, N.Y., Wu, H., Liu, J.Y.C., Chang, M.C.F., 2011. 65-nm CMOS receiver with 4.2 dB NF and 66 dB gain for 60 GHz applications. Electron. Lett., 47(1):15-17.
[11]Wei, H.J., Meng, C., Wu, P.Y., Tsung, K.C., 2008. K-band CMOS sub-harmonic resistive mixer with a miniature Marchand balun on lossy silicon substrate. IEEE Microw. Wirel. Comp. Lett., 18(1):40-42.
[12]Xu, L.J., Wang, Z.G., Li, Q., 2009. Design and analysis of millimeter-wave Marchand balun with interconnected transmission line. J. Infr. Millim. Terahertz Waves, 30(7):738-745.
[13]Yeh, P.C., Liu, W.C., Chiou, H.K., 2005. Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element highpass/band-pass balun. IEEE Microw. Wirel. Comp. Lett., 15(2):62-64.
[14]Yu, H.Y., Choi, S.S., Kim, S.H., Kim, Y.H., 2007. K-band balun with slot pattern ground for wide operation using 0.18 μm CMOS technology. Electron. Lett., 43(5):293.
Open peer comments: Debate/Discuss/Question/Opinion
<1>