Full Text:   <4492>

Summary:  <2075>

CLC number: TP212.3

On-line Access: 2014-05-06

Received: 2013-10-16

Revision Accepted: 2014-03-06

Crosschecked: 2014-04-11

Cited: 6

Clicked: 8863

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.5 P.383-389

http://doi.org/10.1631/jzus.C1300289


A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals


Author(s):  Jing-jing Wang, Wei-hui Liu, Da Chen, Yan Xu, Lu-yin Zhang

Affiliation(s):  Jinan Campus, Shandong University of Science and Technology, Jinan 250010, China; more

Corresponding email(s):   phychenda@163.com, x1y5@hotmail.com

Key Words:  Biosensors, Electro-acoustic resonator, Pesticide residues, Immunoreactions


Jing-jing Wang, Wei-hui Liu, Da Chen, Yan Xu, Lu-yin Zhang. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals[J]. Journal of Zhejiang University Science C, 2014, 15(5): 383-389.

@article{title="A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals",
author="Jing-jing Wang, Wei-hui Liu, Da Chen, Yan Xu, Lu-yin Zhang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="5",
pages="383-389",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300289"
}

%0 Journal Article
%T A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals
%A Jing-jing Wang
%A Wei-hui Liu
%A Da Chen
%A Yan Xu
%A Lu-yin Zhang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 5
%P 383-389
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300289

TY - JOUR
T1 - A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals
A1 - Jing-jing Wang
A1 - Wei-hui Liu
A1 - Da Chen
A1 - Yan Xu
A1 - Lu-yin Zhang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 5
SP - 383
EP - 389
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300289


Abstract: 
Increasing awareness concerning food safety problems has been driving the search for simple and efficient biochemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic resonator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a micro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2×10−10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

基于薄膜电声谐振器的农药残留传感器

研究目的:过量农药残留是目前食品安全中的重要问题之一。现有的标准色谱、质谱方法和酶联免疫等生物传感器无法进行高灵敏的、普及化的、在线和迅速的农药残留检测。本文基于微机电系统技术,提出基于薄膜体声波电声谐振器(film bulk acoustic resonator, FBAR)的高灵敏生物传感器,并将其应用于农药残留检测。对该传感器的灵敏性、特异性、可靠性等应用特性进行研究。
创新要点:将ZnO压电薄膜作为产生GHz频段体声波谐振的功能层,通过设计激励电极,实现了在水中具有高Q值和高灵敏度的剪切波模式质量敏感换能器。在器件表面组装具有特异敏感性的生物抗体,实现对待测物质的生物识别;采用基于竞争性免疫反应的检测方法,达到对典型农药2×10−10 M的检测极限。
器件特色:基于薄膜电声谐振器的生物传感器,采用标准硅基半导体工艺进行制造,能够容易地实现大规模阵列和集成化。由于压电薄膜的谐振频率高,质量灵敏性比传统石英晶体高2个数量级。器件采用横向激励的剪切波模式谐振,在反应液中的Q值达到470,为生物免疫反应的在线检测提供了高性能的质量敏感平台。器件以生物免疫分子作为特异性吸附的功能层,采用竞争性反应吸附检测方法,解决了质量敏感的选择性问题。
重要结论:本文结合薄膜体声波电声谐振器的高质量敏感性和生物免疫反应的特异性,实现了一种高性能的农药残留生物传感器。该传感器灵敏度与传统检测方法相当,具有毫米量级器件尺寸,操作方法简单,并能够在线检测,有望成为目前复杂光学检测系统和电化学系统的替代技术。

关键词:生物传感器;电声谐振器;农药残留;免疫反应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen, D., Wang, J.J., Xu, Y., et al., 2010. The pure-shear mode solidly mounted resonator based on c-axis oriented ZnO film. Appl. Surf. Sci., 256(24):7638-7642.

[2]Chen, D., Wang, J.J., Liu, Q.X., et al., 2011. Highly sensitive ZnO thin film bulk acoustic resonator for hydrogen detection. J. Micromech. Microeng., 21(11):1150181-1150187.

[3]Chen, D., Wang, J.J., Xu, Y., et al., 2012. A thin film electroacoustic enzyme biosensor allowing the detection of trace organophosphorus pesticides. Anal. Biochem., 429(1):42-44.

[4]Deng, A.P., Himmelsbach, M., Zhu, Q.Z., et al., 2003. Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC-MS. Environ. Sci. Technol., 37(15):3422-3429.

[5]Dua, D., Yea, X., Caib, J., et al., 2010. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens. & Bioelectron., 25(11):2503-2508.

[6]Erbahar, D.D., Gurol, I., Gumus, G., et al., 2012. Pesticide sensing in water with phthalocyanine based QCM sensors. Sens. Actuat. B, 173:562-568.

[7]Jiang, X.S., Li, D.Y., Xu, X., et al., 2008. Immunosensors for detection of pesticide residues. Biosens. & Bioelectron., 23(11):1577-1587.

[8]Katardjiev, I., Yantchev, V., 2012. Recent developments in thin film electro-acoustic technology for biosensor applications. Vacuum, 86(5):520-531.

[9]Kim, N., Park, I.S., Kim, D.K., 2007. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosens. & Bioelectron., 22(8):1593-1599.

[10]Lee, H.S., Kim, Y.A., Cho, Y.A., et al., 2002. Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere, 46(4):571-576.

[11]March, C., Manclús, J.J., Jiménez, Y., et al., 2009. A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta, 78(3):827-833.

[12]Mauriz, E., Calle, A., Abad, A., et al., 2006. Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens. & Bioelectron., 21(11):2129-2136.

[13]Narsaiah, K., Jha, S.N., Bhardwaj, R., et al., 2012. Optical biosensors for food quality and safety assurance—a review. J. Food Sci. Technol., 49(4):383-406.

[14]Přibyl, J., Hepel, M., Halámek, J., et al., 2003. Development of piezoelectric immunosensors for competitive and direct determination of atrazine. Sens. Actuat. B, 91(1-3):333-341.

[15]Pundir, C.S., Chauhan, N., 2012. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal. Biochem., 429(1):19-31.

[16]Qian, G.L., Wang, L.M., Wu, Y.R., et al., 2009. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem., 117(2):364-370.

[17]Satoh, Y., Nishihara, T., Yokoyama, T., et al., 2005. Development of piezoelectric thin film resonator and its impact on future wireless communication systems. Jpn. J. Appl. Phys., 44(5A):2883-2894.

[18]Viswanathan, S., Radecka, H., Radecki, J., 2009. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens. & Bioelectron., 24(9):2772-2777.

[19]Voiculescu, I., Nordin, A.N., 2012. Acoustic wave based MEMS devices for biosensing applications. Biosens. & Bioelectron., 33(1):1-9.

[20]Wingqvist, G., 2010. AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review. Surf. Coat. Technol., 205(5):1279-1286.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE