Full Text:   <783>

Summary:  <210>

CLC number: R739.91

On-line Access: 2017-09-05

Received: 2016-07-25

Revision Accepted: 2016-11-22

Crosschecked: 2017-08-16

Cited: 0

Clicked: 1638

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bing-yu Xiang

http://orcid.org/0000-0002-5188-8295

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.9 P.737-746

10.1631/jzus.B1600337


Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma


Author(s):  Bing-yu Xiang, Lu Chen, Xiao-jun Wang, Charlie Xiang

Affiliation(s):  State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China

Corresponding email(s):   cxiang@zju.edu.cn

Key Words:  Cancer, Glioma, Mesenchymal stem cells, Stem cells, Therapy


Share this article to: More |Next Article >>>

Bing-yu Xiang, Lu Chen, Xiao-jun Wang, Charlie Xiang. Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma[J]. Journal of Zhejiang University Science B, 2017, 18(9): 737-746.

@article{title="Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma",
author="Bing-yu Xiang, Lu Chen, Xiao-jun Wang, Charlie Xiang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="9",
pages="737-746",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600337"
}

%0 Journal Article
%T Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma
%A Bing-yu Xiang
%A Lu Chen
%A Xiao-jun Wang
%A Charlie Xiang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 9
%P 737-746
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600337

TY - JOUR
T1 - Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma
A1 - Bing-yu Xiang
A1 - Lu Chen
A1 - Xiao-jun Wang
A1 - Charlie Xiang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 9
SP - 737
EP - 746
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600337


Abstract: 
stem cells%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>mesenchymal stem cells (MSCs) are plastic-adherent cells with a characteristic surface phenotype and properties of self-renewal, differentiation, and high proliferative potential. The characteristics of MSCs and their tumor-tropic capability make them an ideal tool for use in cell-based therapies for cancer, including glioma. These cells can function either through a bystander effect or as a delivery system for genes and drugs. MSCs have been demonstrated to inhibit the growth of glioma and to improve survival following transplantation into the brain. We briefly review the current data regarding the use of MSCs in the treatment of glioma and discuss the potential strategies for development of a more specific and effective therapy.

间充质干细胞在胶质瘤治疗中的作用研究

概要:胶质瘤是颅内发病率最高的恶性肿瘤,虽然临床上可以用"手术+化疗"的方法进行治疗,但由于其浸润性,对化疗药物的低敏感性等原因,常在治疗后复发,严重威胁人类生命健康。间充质干细胞(MSC)是干细胞中的一员,具有增殖能力强、分化潜能大、免疫原性低及采集方便等优点,其趋化性更使MSC成为肿瘤治疗的一个理想工具。本文对干细胞治疗胶质瘤的研究现状进行了归纳总结,着重阐述了MSC的旁分泌途径作用及作为基因载体导入肿瘤坏死因子相关凋亡诱导配体(TRAIL)、溶瘤病毒等其他治疗基因的生物功能,以期对进一步的治疗研究提供帮助。
关键词:癌症;间充质干细胞;胶质瘤;细胞治疗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akimoto, K., Kimura, K., Nagano, M., et al., 2013. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev., 22(9):1370-1386.

[2]Amano, S., Li, S., Gu, C., et al., 2009. Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. Int. J. Oncol., 35(6):1265-1270.

[3]Bak, X.Y., Lam, D.H., Yang, J., et al., 2011. Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Hum. Gene Ther., 22(11):1365-1377.

[4]Bexell, D., Gunnarsson, S., Tormin, A., et al., 2009. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol. Ther., 17(1):183-190.

[5]Bexell, D., Gunnarsson, S., Svensson, A., et al., 2012. Rat multipotent mesenchymal stromal cells lack long-distance tropism to 3 different rat glioma models. Neurosurgery, 70(3):731-739.

[6]Castro, M.G., Cowen, R., Williamson, I.K., et al., 2003. Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther., 98(1):71-108.

[7]Cavarretta, I.T., Altanerova, V., Matuskova, M., et al., 2010. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol. Ther., 18(1):223-231.

[8]Chang, D.Y., Yoo, S.W., Hong, Y., et al., 2010. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int. J. Cancer, 127(8):1975-1983.

[9]Choi, S.A., Hwang, S.K., Wang, K.C., et al., 2011. Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol., 13(1):61-69.

[10]Choi, S.A., Lee, J.Y., Wang, K.C., et al., 2012. Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer, 48(1):129-137.

[11]Choi, S.H., Tamura, K., Khajuria, R.K., et al., 2015. Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas. Mol. Ther., 23(2):235-243.

[12]Coffelt, S.B., Marini, F.C., Watson, K., et al., 2009. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc. Natl. Acad. Sci. USA, 106(10):3806-3811.

[13]Croce, C.M., 2009. Causes and consequences of microrna dysregulation in cancer. Nat. Rev. Cancer, 10(10):704-714.

[14]Danks, M.K., Yoon, K.J., Bush, R.A., et al., 2007. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res., 67(1):22-25.

[15]Dasari, V.R., Kaur, K., Velpula, K.K., et al., 2010. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS ONE, 5(4):e10350.

[16]Deangelis, L.M., 2001. Brain tumors. N. Engl. J. Med., 344(2):114-123.

[17]del Fattore, A., Luciano, R., Saracino, R., et al., 2015. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin. Biol. Ther., 15(4):495-504.

[18]de Melo, S.M., Bittencourt, S., Ferrazoli, E.G., et al., 2015. The anti-tumor effects of adipose tissue mesenchymal stem cell transduced with HSV-Tk gene on U-87-driven brain tumor. PLoS ONE, 10(6):e0128922.

[19]Djouad, F., Plence, P., Bony, C., et al., 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10):3837-3844.

[20]Dominici, M., le Blanc, K., Mueller, I., et al., 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4):315-317.

[21]Ferguson, M.S., Lemoine, N.R., Wang, Y., 2012. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv. Virol., 2012:805629.

[22]Friedenstein, A.J., Chailakhjan, R.K., Lalykina, K.S., 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferat., 3(4):393-403.

[23]Friedenstein, A.J., Deriglasova, U.F., Kulagina, N.N., et al., 1974. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol., 2(2):83-92.

[24]Gao, Y., Gu, C., Li, S., et al., 2010. P27 modulates tropism of mesenchymal stem cells toward brain tumors. Exp. Ther. Med., 1(4):695-699.

[25]Gunnarsson, S., Bexell, D., Svensson, A., et al., 2010. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNγ-transduced tumor cell immunotherapy of experimental glioma. J. Neuroimmunol., 218(1-2):140-144.

[26]Harting, M.T., Jimenez, F., Xue, H., et al., 2009. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg., 110(6):1189-1197.

[27]Ho, I.A., Chan, K.Y., Ng, W.H., et al., 2009. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells, 27(6):1366-1375.

[28]Ho, I.A., Toh, H.C., Ng, W.H., et al., 2013. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells, 31(1):146-155.

[29]Hong, X., Miller, C., Savant-Bhonsale, S., et al., 2009. Antitumor treatment using interleukin-12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery, 64(6):1139-1146.

[30]Hu, G., Drescher, K.M., Chen, X.M., 2012. Exosomal miRNAs: biological properties and therapeutic potential. Front. Genet., 3:56.

[31]Ichikawa, T., Tamiya, T., Adachi, Y., et al., 2000. In vivo efficacy and toxicity of 5-fluorocytosine/cytosine deaminase gene therapy for malignant gliomas mediated by adenovirus. Cancer Gene Ther., 7(1):74-82.

[32]Jiao, H., Guan, F., Yang, B., et al., 2011. Human umbilical cord blood-derived mesenchymal stem cells inhibit C6 glioma via downregulation of cyclin D1. Neurol. India, 59(2):241-247.

[33]Johnson, D.R., Leeper, H.E., Uhm, J.H., 2013. Glioblastoma survival in the united states improved after food and drug administration approval of bevacizumab: a population-based analysis. Cancer, 119(19):3489-3495.

[34]Karnoub, A.E., Dash, A.B., Vo, A.P., et al., 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162):557-563.

[35]Katakowski, M., Buller, B., Zheng, X., et al., 2013. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett., 335(1):201-204.

[36]Keles, G.E., Berger, M.S., 2004. Advances in neurosurgical technique in the current management of brain tumors. Semin. Oncol., 31(5):659-665.

[37]Kim, D.S., Kim, J.H., Lee, J.K., et al., 2009. Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev., 18(3):511-519.

[38]Kim, S.M., Oh, J.H., Park, S.A., et al., 2010. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells, 28(12):2217-2228.

[39]Kim, S.M., Kim, D.S., Jeong, C.H., et al., 2011. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem. Biophys. Res. Commun., 407(4):741-746.

[40]Kim, S.M., Woo, J.S., Jeong, C.H., et al., 2012. Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res., 72(18):4807-4817.

[41]Kim, S.M., Woo, J.S., Jeong, C.H., et al., 2014. Potential application of temozolomide in mesenchymal stem cell-based TRAIL gene therapy against malignant glioma. Stem Cells Transl. Med., 3(2):172-182.

[42]Kim, S.M., Jeong, C.H., Woo, J.S., et al., 2016. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. Int. J. Nanomed., 11:13-23.

[43]Kinoshita, Y., Kamitani, H., Mamun, M.H., et al., 2010. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol. Res., 32(4):429-437.

[44]Kolosa, K., Motaln, H., Herold-Mende, C., et al., 2015. Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant., 24(4):631-644.

[45]Komarova, S., Kawakami, Y., Stoff-Khalili, M.A., et al., 2006. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther., 5(3):755-766.

[46]Kosaka, H., Ichikawa, T., Kurozumi, K., et al., 2012. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther., 19(8):572-578.

[47]Kucerova, L., Altanerova, V., Matuskova, M., et al., 2007. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res., 67(13):6304-6313.

[48]Kucerova, L., Matuskova, M., Pastorakova, A., et al., 2008. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J. Gene Med., 10(10):1071-1082.

[49]Lee, D.H., Ahn, Y., Kim, S.U., et al., 2009. Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clin. Cancer Res., 15(15):4925-4934.

[50]Lefranc, F., Brotchi, J., Kiss, R., 2005. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol., 23(10):2411-2422.

[51]Lichty, B.D., Breitbach, C.J., Stojdl, D.F., et al., 2014. Going viral with cancer immunotherapy. Nat. Rev. Cancer, 14(8):559-567.

[52]Martinez-Quintanilla, J., He, D., Wakimoto, H., et al., 2015. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol. Ther., 23(1):108-118.

[53]Matuskova, M., Hlubinova, K., Pastorakova, A., et al., 2010. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett., 290(1):58-67.

[54]McCulloch, E.A., Parker, R.C., 1957. Continuous cultivation of cells of hemic origin. Proc. Can. Cancer Conf., 2:152-167.

[55]Miletic, H., Fischer, Y., Litwak, S., et al., 2007. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol. Ther., 15(7):1373-1381.

[56]Motaln, H., Gruden, K., Hren, M., et al., 2012. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant., 21(7):1529-1545.

[57]Nagano, M., Kimura, K., Yamashita, T., et al., 2010. Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair. Stem Cells Dev., 19(8):1195-1210.

[58]Nakamizo, A., Marini, F., Amano, T., et al., 2005. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res., 65(8):3307-3318.

[59]Nakamura, K., Ito, Y., Kawano, Y., et al., 2004. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther., 11(14):1155-1164.

[60]Otsu, K., Das, S., Houser, S.D., et al., 2009. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113(18):4197-4205.

[61]Owen, M., Friedenstein, A.J., 1988. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp., 136:42-60.

[62]Park, J.H., Ryu, C.H., Kim, M.J., et al., 2015. Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells. J. Korean Neurosurg. Soc., 57(5):323-328.

[63]Parker, J.N., Bauer, D.F., Cody, J.J., et al., 2009. Oncolytic viral therapy of malignant glioma. Neurotherapeutics, 6(3):558-569.

[64]Parolini, O., Alviano, F., Bagnara, G.P., et al., 2008. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells, 26(2):300-311.

[65]Pillat, M.M., Oliveira, M.N., Motaln, H., et al., 2016. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: possible involvement of bradykinin in information flow. Cytom. Part A, 89(4):365-375.

[66]Prockop, D.J., 2009. Repair of tissues by adult stem/progenitor cells (MSCS):controversies, myths, and changing paradigms. Mol. Ther., 17(6):939-946.

[67]Pulkkanen, K.J., Yla-Herttuala, S., 2005. Gene therapy for malignant glioma: current clinical status. Mol. Ther., 12(4):585-598.

[68]Ryu, C.H., Park, S.H., Park, S.A., et al., 2011. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum. Gene Ther., 22(6):733-743.

[69]Sato, H., Kuwashima, N., Sakaida, T., et al., 2005. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther., 12(9):757-768.

[70]Schichor, C., Birnbaum, T., Etminan, N., et al., 2006. Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp. Neurol., 199(2):301-310.

[71]Secchiero, P., Zorzet, S., Tripodo, C., et al., 2010. Human bone marrow mesenchymal stem cells display anti-cancer activity in scid mice bearing disseminated non-hodgkin’s lymphoma xenografts. PLoS ONE, 5(6):e11140.

[72]Smith, C.L., Chaichana, K.L., Lee, Y.M., et al., 2015. Pre-exposure of human adipose mesenchymal stem cells to soluble factors enhances their homing to brain cancer. Stem Cells Transl. Med., 4(3):239-251.

[73]Song, F., Xing, Q., Song, K.D., et al., 2012. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J. Cancer Res. Clin. Oncol., 138(2):347-357.

[74]Strojby, S., Eberstal, S., Svensson, A., et al., 2014. Intratumorally implanted mesenchymal stromal cells potentiate peripheral immunotherapy against malignant rat gliomas. J. Neuroimmunol., 274(1-2):240-243.

[75]Studeny, M., Marini, F.C., Champlin, R.E., et al., 2002. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res., 62(13):3603-3608.

[76]Surawicz, T.S., Davis, F., Freels, S., et al., 1998. Brain tumor survival: results from the national cancer data base. J. Neurooncol., 40(2):151-160.

[77]Tang, X.J., Lu, J.T., Tu, H.J., et al., 2014. TRAIL-engineered bone marrow-derived mesenchymal stem cells: TRAIL expression and cytotoxic effects on C6 glioma cells. Anticancer Res., 34(2):729-734.

[78]Uchibori, R., Okada, T., Ito, T., et al., 2009. Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J. Gene Med., 11(5):373-381.

[79]Wierdl, M., Morton, C.L., Weeks, J.K., et al., 2001. Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res., 61(13):5078-5082.

[80]Wiley, S.R., Schooley, K., Smolak, P.J., et al., 1995. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 3(6):673-682.

[81]Wu, G.S., 2009. TRAIL as a target in anti-cancer therapy. Cancer Lett., 285(1):1-5.

[82]Xu, F., Shi, J., Yu, B., et al., 2010. Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol. Rep., 23(6):1561-1567.

[83]Xu, G., Jiang, X.D., Xu, Y., et al., 2009. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int., 33(4):466-474.

[84]Yang, C., Lei, D., Ouyang, W., et al., 2014. Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed. Res. Int., 2014:109389.

[85]Yong, R.L., Shinojima, N., Fueyo, J., et al., 2009. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res., 69(23):8932-8940.

[86]Yulyana, Y., Endaya, B.B., Ng, W.H., et al., 2013. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma. Stem Cells Dev., 22(13):1870-1882.

[87]Zischek, C., Niess, H., Ischenko, I., et al., 2009. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann. Surg., 250(5):747-753.

[88]Zuk, P.A., Zhu, M., Mizuno, H., et al., 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng., 7(2):211-228.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE